News & Events

Subscribe to email list

Please select the email list(s) to which you wish to subscribe.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA

Enter the characters shown in the image.

User menu

You are here

Bridging the Gap Between Deep Learning and Probabilistic Modeling

Thursday, March 10, 2022 - 11:00 to 12:00
Geoff Pleiss, Postdoctoral Research Scientist, Department of Statistics and Zuckerman Institute, Columbia University
Statistics Seminar
Zoom

To join via Zoom: To join this seminar, please request Zoom connection details from headsec [at] stat.ubc.ca

Title: Bridging the Gap Between Deep Learning and Probabilistic Modeling

Abstract: Deep learning excels with large-scale unstructured data - common across many modern application domains - while probabilistic modeling offers the ability to encode prior knowledge and quantify uncertainty - necessary for safety-critical applications and downstream decision-making tasks. I will discuss examples from my research that bridge the gap between these two learning paradigms. The first half will show that insights from deep learning can improve the practicality of probabilistic models. I will discuss work that scales Gaussian process regression, a common probabilistic model, to datasets two orders of magnitude larger than previously reported. The second half will show that probabilistic methods can improve our understanding of deep learning. I will demonstrate that Gaussian process theory uncovers new insights about the effects of width and depth in neural networks. I will conclude with ongoing efforts to quantify neural network uncertainty, develop new inductive biases, and other work at the intersection of deep learning and probabilistic modeling.