Our Department

Department Alumni Fest 2016

Subscribe to email list

Please select the email list(s) to which you wish to subscribe.

User menu

Publications by Harry Joe

2020

Krupskii P, Joe H. Flexible copula models with dynamic dependence and application to financial data. Econometrics and Statistics. 2020; 16: 148-167. DOI: 10.1016/j.ecosta.2020.01.005
Cooke RM, Joe H, Chang B. Vine copula regression for observational studies. ASTA-Advances in Statistical Analysis. 2020; 104: 141-167. DOI: 10.1007/s10182-019-00353-5

2019

Chang B, Joe H. Prediction based on conditional distributions of vine copulas. Computational Statistics & Data Analysis. 2019; 139: 45-63. DOI: 10.1016/j.csda.2019.04.015
Fernandez-Fontelo A, Cabana A, Joe H, Puig P, Morina D. Untangling serially dependent underreported count data for gender-based violence. Statistics in Medicine. 2019; 38: 4404-4422. DOI: 10.1002/sim.8306, Early Access Date = JUL 2019
Krupskii P, Joe H. Nonparametric estimation of multivariate tail probabilities and tail dependence coefficients. Journal of Multivariate Analysis. Canadian Stat Sci Inst; 2019; 172: 147-161. DOI: 10.1016/j.jmva.2019.02.013
Joe H, Li H. Tail densities of skew-elliptical distributions. Journal of Multivariate Analysis. 2019; 171: 421-435. DOI: 10.1016/j.jmva.2019.01.009
Chang B, Pan S, Joe H. Vine copula structure learning via Monte Carlo tree search. In: Chaudhuri K, Sugiyama M. 22ND International Conference on Artificial Intelligence and Statistics, Vol 89. 2019. pp. 353-361.
Hadley D, Joe H, Nolde N. On the selection of loss severity distributions to model operational risk. Journal of Operational Risk. 2019; 14: 73-94. DOI: 10.21314/JOP.2019.229

2018

Joe H. Dependence properties of conditional distributions of some copula models. Methodology and Computing in Applied Probability. 2018; 20: 975-1001. DOI: 10.1007/s11009-017-9544-9 ISSN = 1387-5841
Lee D, Joe H, Krupskii P. Tail-weighted dependence measures with limit being the tail dependence coefficient. Journal of Nonparametric Statistics. 2018; 30: 262-290. DOI: 10.1080/10485252.2017.1407414
Joe H. Parsimonious graphical dependence models constructed from vines. Canadian Journal of Statistics. 2018; 46: 532-555. DOI: 10.1002/cjs.11481

2017

Panagiotelis A, Czado C, Joe H, Stoeber J. Model selection for discrete regular vine copulas. COMPUTATIONAL STATISTICS & DATA ANALYSIS. 2017; 106: 138-152. DOI: 10.1016/j.csda.2016.09.007
Hua L, Joe H. Multivariate dependence modeling based on comonotonic factors. Journal of Multivariate Analysis. 2017; 155: 317-333. DOI: 10.1016/j.jmva.2017.01.008
Joe H. Parametric copula families for statistical models. In: Ubeda-Flores M, de Amo-Artero E, Durante F, Fernandez-Sanchez J. Copulas and Dependence Models with Applications: Contributions in Honor of Roger B. Nelsen [Internet]. Berlin: Springer; 2017. pp. 119–134. URL: https://link.springer.com/book/10.1007/978-3-319-64221-5

2016

Ng CT, Joe H. Comparison of non-nested models under a general measure of distance. Journal of Statistical Planning and Inference. Elsevier Science BV; 2016; 170: 166-185. DOI: 10.1016/j.jspi.2015.10.004

2015

Krupskii P, Joe H. Structured factor copula models: Theory, inference and computation. Journal of Multivariate Analysis. Elsevier Inc; 2015; 138: 53-73. DOI: 10.1016/j.jmva.2014.11.002
Krupskii P, Joe H. Tail-weighted measures of dependence. Journal of Applied Statistics. Taylor & Francis Ltd; 2015; 42: 614-629. DOI: 10.1080/02664763.2014.980787
Nikoloulopoulos AK, Joe H. Factor copula models for item response data. Psychometrika. Springer; 2015; 80: 126-150. DOI: 10.1007/s11336-013-9387-4
Joe H. Markov count time series models with covariates. In: Davis RA, Holan SH, Lund RB, Ravishanker N. Handbook of Discrete-Valued Time Series [Internet]. Boca Raton, FL: Chapman & Hall/CRC; 2015. pp. 29–49. URL: http://www.crcpress.com/product/isbn/9781466577732
Hexter A, Jones A, Joe H, Heap L, Smith MJ, Wallace AJ, et al. Clinical and molecular predictors of mortality in neurofibromatosis 2: a UK national analysis of 1192 patients. Journal of Medical Genetics. BMJ Publishing Group; 2015; 52: 699-705. DOI: 10.1136/jmedgenet-2015-103290
Joe H, Cai J, Czado C, Li H. Preface to special issue on high-dimensional dependence and copulas. Journal of Multivariate Analysis. Elsevier Inc; 2015; 138: 1-3. DOI: 10.1016/j.jmva.2015.03.002
Brechmann EC, Joe H. Truncation of vine copulas using fit indices. Journal of Multivariate Analysis. Elsevier Inc; 2015; 138: 19-33. DOI: 10.1016/j.jmva.2015.02.012

2014

Ng CT, Joe H. Model comparison with composite likelihood information criteria. Bernoulli. Int Statistical Inst; 2014; 20: 1738-1764. DOI: 10.3150/13-BEJ539
Brechmann EC, Joe H. Parsimonious parameterization of correlation matrices using truncated vines and factor analysis. Computational Statistics & Data Analysis. Elsevier Science BV; 2014; 77: 233-251. DOI: 10.1016/j.csda.2014.03.002
Joe H. Dependence Modeling with Copulas [Internet]. Boca Raton, FL: Chapman & Hall/CRC; 2014. URL: http://www.crcpress.com/product/isbn/9781466583221
Hua L, Joe H, Li H. Relations between hidden regular variation and the tail order of copulas. Journal of Applied Probability. Applied Probability Trust; 2014; 51: 37-57. DOI: 10.1017/S0021900200010068
Maydeu-Olivares A, Joe H. Assessing approximate fit in categorical data analysis. Multivariate Behavioral Research. Routledge Journals, Taylor & Francis Ltd; 2014; 49: 305-328. DOI: 10.1080/00273171.2014.911075
Hua L, Joe H. Strength of tail dependence based on conditional tail expectation. Journal of Multivariate Analysis. Elsevier Inc; 2014; 123: 143-159. DOI: 10.1016/j.jmva.2013.09.001

2013

Nolde N, Joe H. A Bayesian extreme value analysis of debris flows. Water Resources Research. Amer Geophysical Union; 2013; 49: 7009-7022. DOI: 10.1002/wrcr.20494
Krupskii P, Joe H. Factor copula models for multivariate data. Journal of Multivariate Analysis. Elsevier Inc; 2013; 120: 85-101. DOI: 10.1016/j.jmva.2013.05.001
Rosco JF, Joe H. Measures of tail asymmetry for bivariate copulas. Statistical Papers. Springer; 2013; 54: 709-726. DOI: 10.1007/s00362-012-0457-y
Stoeber J, Joe H, Czado C. Simplified pair copula constructions: Limitations and extensions. Journal of Multivariate Analysis. Elsevier Inc; 2013; 119: 101-118. DOI: 10.1016/j.jmva.2013.04.014
Hua L, Joe H. Intermediate tail dependence: a review and some new results. In: Li H, Li X. Stochastic Orders in Reliability and Risk. New York: Springer; 2013. pp. 291-311. DOI: 10.1007/978-1-4614-6892-9_15

2012

Hua L, Joe H. Tail comonotonicity and conservative risk measures. ASTIN Bulletin. Peeters; 2012; 42: 601-629. DOI: 10.2143/AST42.2.2182810
Nikoloulopoulos AK, Joe H, Li H. Vine copulas with asymmetric tail dependence and applications to financial return data. Computational Statistics & Data Analysis. Elsevier Science BV; 2012; 56: 3659-3673. DOI: 10.1016/j.csda.2010.07.016
Panagiotelis A, Czado C, Joe H. Pair copula constructions for multivariate discrete data. Journal of the American Statistical Association. Amer Statistical Assoc; 2012; 107: 1063-1072. DOI: 10.1080/01621459.2012.682850
Hua L, Joe H. Tail comonotonicity: Properties, constructions, and asymptotic additivity of risk measures. Insurance Mathematics & Economics. Elsevier Science BV; 2012; 51: 492-503. DOI: 10.1016/j.insmatheco.2012.07.006
Joe H. Book Review of ``Inequalities: Theory of Majorization and Its Applications, by AW Marshall, I. Olkin and BC Arnold, Springer". Probability in the Engineering and Informational Sciences. Cambridge University Press; 2012; 26: 449–453. DOI: 10.1017/S0269964812000113
Joe H, Seshadri V, Arnold BC. Multivariate inverse Gaussian and skew-normal densities. Statistics & Probability Letters. Elsevier Science BV; 2012; 82: 2244-2251. DOI: 10.1016/j.spl.2012.08.004

2011

Cooke RM, Joe H, Aas K. Vines arise. In: Kurowicka D, Joe H. Dependence Modeling: Vine Copula Handbook. Singapore: World Scientific Publishing Company; 2011. pp. 37–71. DOI: 10.1142/9789814299886_0003
Cooke RM, Kousky C, Joe H. Micro correlations and tail dependence. In: Kurowicka D, Joe H. Dependence Modeling: Vine Copula Handbook. Singapore: World Scientific; 2011. pp. 89–112. DOI: 10.1142/9789814299886_0005
Joe H. Dependence comparisons of vine copulae in four or more variables. In: Kurowicka D, Joe H. Dependence Modeling: Vine Copula Handbook. Singapore: World Scientific; 2011. pp. 139–164. DOI: 10.1142/9789814299886_0007
Joe H. Tail dependence in vine copulae. In: Kurowicka D, Joe H. Dependence Modeling: Vine Copula Handbook. Singapore: World Scientific; 2011. pp. 165–187. DOI: 10.1142/9789814299886_0008
Joe H, Li H. Tail risk of multivariate regular variation. Methodology and Computing in Applied Probability. Springer; 2011; 13: 671-693. DOI: 10.1007/s11009-010-9183-x

Pages